314 research outputs found

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability

    Get PDF
    The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at quali- tative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions. Learn- ing can be crucial for survival and reproduction of introduced organisms in novel areas, for example, for detecting new predators, or finding mates or oviposition sites. Here we explored how oviposition performance evolved in relation to both fecundity and learning during an invasion, using native and introduced Drosophila subobscura populations performing an ecologically rele- vant task. Our results indicated that, under comparable conditions, invasive populations performed better during our oviposition task than did native pop- ulations. This was because invasive populations had higher fecundity, together with similar cognitive performance when compared to native populations, and that there was no interaction between learning and fecundity. Unexpectedly, our study did not reveal an allocation trade-off (i.e., a negative relationship) between learning and fecundity. On the contrary, the pattern we observed was more consistent with an acquisition trade-off, meaning that fecundity could be limited by availability of resources, unlike cognitive ability. This pattern might be the consequence of escaping natural enemies and/or competitors during the introduction. The apparent lack of evolution of learning may indicate that the introduced population did not face novel cognitive challenges in the new environment (i.e., cognitive "pre-adaptation"). Alternatively, the evolution of learning may have been transient and therefore not detected

    The XMM-LSS survey: The XMDS/VVDS 4 sigma catalogue

    Full text link
    We present a first catalogue of X-ray sources resulting from the central area of the XMM-LSS (Large Scale Structure survey). We describe the reduction procedures and the database tools we developed and used to derive a well defined catalogue of X-ray sources. The present catalogue is limited to a sub-sample of 286 sources detected at 4 sigma in the 1 deg^2 area covered by the photometric VVDS (VIRMOS VLT Deep Survey), which allows us to provide optical and radio identifications. We also discuss the X-ray properties of a larger X-ray sample of 536 sources detected at > 4 sigma in the full 3 deg^2 area of the XMM Medium Deep Survey (XMDS) independently of the optical identification. We also derive the logN-logS relationship for a sample of more than one thousand sources that we discuss in the context of other surveys at similar fluxes.Comment: 15+6 pages, 12 figures, accepted for publication in Astronomy & Astrophysics The online catalogue announced in the paper will be accessible in about 2 weeks due to technical reasons Fig. 2 replaced with a low resolution on

    The VIRMOS deep imaging survey: I. overview and survey strategy

    Full text link
    This paper presents the CFH12K-VIRMOS survey: a deep B, V, R and I imaging survey in four fields totalling more than 17 deg^2, conducted with the 30x40 arcmin^2 field CFH-12K camera. The survey is intended to be a multi-purpose survey used for a variety of science goals, including surveys of very high redshift galaxies and weak lensing studies. Four high galactic latitude fields, each 2x2 deg^2, have been selected along the celestial equator: 0226-04, 1003+01, 1400+05, and 2217+00. The 16 deg^2 of the "wide" survey are covered with exposure times of 2h, 1.5h, 1h, 1h, while the 1.3x1 deg^2 area of the "deep" survey at the center of the 0226-04 field is covered with exposure times of 7h, 4.5h, 3h, 3h, in B,V,R and I respectively. The data is pipeline processed at the Terapix facility at the Institut d'Astrophysique de Paris to produce large mosaic images. The catalogs produced contain the positions, shape, total and aperture magnitudes for the 2.175 million objects. The depth measured (3sigma in a 3 arc-second aperture) is I_{AB}=24.8 in the ``Wide'' areas, and I_{AB}=25.3 in the deep area. Careful quality control has been applied on the data as described in joint papers. These catalogs are used to select targets for the VIRMOS-VLT Deep Survey, a large spectroscopic survey of the distant universe (Le F\`evre et al., 2003). First results from the CFH12K-VIRMOS survey have been published on weak lensing (e.g. van Waerbeke & Mellier 2003). Catalogs and images are available through the VIRMOS database environment under Oracle ({\tt http://www.oamp.fr/virmos}). They will be open for general use on July 1st, 2003.Comment: 17 pages including 9 figures, submitted to A&

    The VLA-VIRMOS Deep Field I. Radio observations probing the microJy source population

    Full text link
    We have conducted a deep survey (r.m.s noise 17 microJy) with the Very Large Array (VLA) at 1.4 GHz, with a resolution of 6 arcsec, of a 1 square degree region included in the VIRMOS VLT Deep Survey. In the same field we already have multiband photometry down to I(AB)=25, and spectroscopic observations will be obtained during the VIRMOS VLT survey. The homogeneous sensitivity over the whole field has allowed to derive a complete sample of 1054 radio sources (5 sigma limit). We give a detailed description of the data reduction and of the analysis of the radio observations, with particular care to the effects of clean bias and bandwidth smearing, and of the methods used to obtain the catalogue of radio sources. To estimate the effect of the resolution bias on our observations we have modelled the effective angular-size distribution of the sources in our sample and we have used this distribution to simulate a sample of radio sources. Finally we present the radio count distribution down to 0.08 mJy derived from the catalogue. Our counts are in good agreement with the best fit derived from earlier surveys, and are about 50 % higher than the counts in the HDF. The radio count distribution clearly shows, with extremely good statistics, the change in the slope for the sub-mJy radio sources.Comment: 13 pages, Accepted for publication in Astronomy & Astrophysic

    Can We Detect the Color–Density Relation with Photometric Redshifts?

    Get PDF
    A variety of methods have been proposed to define and to quantify galaxy environments. While these techniques work well in general with spectroscopic redshift samples, their application to photometric redshift surveys remains uncertain. To investigate whether galaxy environments can be robustly measured with photo-z samples, we quantify how the density measured with the nearest-neighbor approach is affected by photo-z uncertainties by using the Durham mock galaxy catalogs in which the 3D real-space environments and the properties of galaxies are known exactly. Furthermore, we present an optimization scheme in the choice of parameters used in the 2D projected measurements that yield the tightest correlation with respect to the 3D real-space environments. By adopting the optimized parameters in the density measurements, we show that the correlation between the 2D projected optimized density and the real-space density can still be revealed, and the color–density relation is also visible out to z ~ 0.8 even for a photo-z uncertainty (σΔz/(1+z){\sigma }_{{{\rm{\Delta }}}_{z}/(1+z)}) up to 0.06. We find that at redshifts 0.3 < z < 0.5 a deep (i ~ 25) photometric redshift survey with σΔz/(1+z)  =  0.02{\sigma }_{{{\rm{\Delta }}}_{z}/(1+z)}\;=\;0.02 yields a performance in small-scale density measurement that is comparable to a shallower i ~ 22.5 spectroscopic sample with ~10% sampling rate. Finally, we discuss the application of the local density measurements to the Pan-STARRS1 Medium Deep Survey (PS-MDS), one of the largest deep optical imaging surveys. Using data from ~5 square degrees of survey area, our results show that it is possible to measure local density and to probe the color–density relation with 3σ confidence level out to z ~ 0.8 in the PS-MDS. The color–density relation, however, quickly degrades for data covering smaller areas

    Near-Infrared Survey and Photometric Redshifts in the Extended GOODS-North field

    Full text link
    We present deep JJ and HH-band images in the extended Great Observatories Origins Deep Survey-North (GOODS-N) field covering an area of 0.22 deg2\rm{deg}^{2}. The observations were taken using WIRCam on the 3.6-m Canada France Hawaii Telescope (CFHT). Together with the reprocessed KsK_{\rm s}-band image, the 5σ5\sigma limiting AB magnitudes (in 2" diameter apertures) are 24.7, 24.2, and 24.4 AB mag in the JJ, HH, and KsK_{\rm s} bands, respectively. We also release a multi-band photometry and photometric redshift catalog containing 93598 sources. For non-X-ray sources, we obtained a photometric redshift accuracy σNMAD=0.036\sigma_{\mathrm{NMAD}}=0.036 with an outlier fraction η=7.3%\eta = 7.3\%. For X-ray sources, which are mainly active galactic nuclei (AGNs), we cross-matched our catalog with the updated 2M-CDFN X-ray catalog from Xue et al. (2016) and found that 658 out of 683 X-ray sources have counterparts. GALEXGALEX UV data are included in the photometric redshift computation for the X-ray sources to give σNMAD=0.040\sigma_{\mathrm{NMAD}} = 0.040 with η=10.5%\eta=10.5\%. Our approach yields more accurate photometric redshift estimates compared to previous works in this field. In particular, by adopting AGN-galaxy hybrid templates, our approach delivers photometric redshifts for the X-ray counterparts with fewer outliers compared to the 3D-HST catalog, which fit these sources with galaxy-only templates

    The VIMOS VLT Deep Survey :Evolution of the major merger rate since z~1 from spectroscopicaly confirmed galaxy pairs

    Full text link
    From the VIMOS VLT Deep Survey we use a sample of 6447 galaxies with I_{AB} < 24 to identify 251 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. We find that at z ~ 0.9, 10.9 +/- 3.2 % of galaxies with M_B(z) < -18-Qz are in pairs with separations dr < 20 kpc/h, dv < 500 km/s, and with dM_B < 1.5, significantly larger than 3.76 +/- 1.71 % at z ~ 0.5; we find that the pair fraction evolves as (1+z)^m with m = 2.49 +/- 0.56. For brighter galaxies with M_B(z=0) < -18.77, the pair fraction is higher and its evolution with redshift is somewhat flatter with m=1.88 \pm 0.40, a property also observed for galaxies with increasing stellar masses. Early type, dry mergers, pairs increase their relative fraction from 3 % at z ~ 0.9 to 12 % at z ~ 0.5. We find that the merger rate evolves as N_{mg}=(9.05 +/- 3.76) * 10^{-4}) * (1+z)^{2.43 +/- 0.76}. We find that the merger rate of galaxies with M_B(z) < -18-Qz has significantly evolved since z ~ 1. The merger rate is increasing more rapidly with redshift for galaxies with decreasing luminosities, indicating that the flat evolution found for bright samples is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved, late type mergers being more frequent in the past, while early type mergers are more frequent today, contributing to the rise in the local density of early type galaxies. About 20 % of the stellar mass in present day galaxies with log(M/M_{sun}) > 9.5 has been accreted through major merging events since z ~ 1, indicating that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe.Comment: 22 pages, 19 figures, accepted in A&
    • 

    corecore